================================ Optimizing Average Precision Loss on Imbalanced CIFAR10 Dataset (SOAP) ================================ .. raw:: html
Run on Colab
Download Notebook
View on Github
------------------------------------------------------------------------------------ .. container:: cell markdown | **Author**: Gang Li | **Edited by**: Zhuoning Yuan, Tianbao Yang \ Introduction ----------------------- In this tutorial, you will learn how to quickly train a Resnet18 model by optimizing **AUPRC** with our novel :obj:`APLoss` and :obj:`SOAP` optimizer `[ref] `__ on a binary image classification task with CIFAR-10 dataset. After completion of this tutorial, you should be able to use LibAUC to train your own models on your own datasets. **Reference**: If you find this tutorial helpful in your work, please cite our `library paper `__ and the following papers: .. code-block:: RST @article{qi2021stochastic, title={Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence}, author={Qi, Qi and Luo, Youzhi and Xu, Zhao and Ji, Shuiwang and Yang, Tianbao}, journal={Advances in Neural Information Processing Systems}, volume={34}, year={2021}} Install LibAUC ------------------------------------------------------------------------------------ Let's start with installing our library here. In this tutorial, we will use the lastest version for LibAUC by using ``pip install -U``. .. container:: cell code .. code:: python !pip install -U libauc Importing LibAUC ------------------------------------------------------------------------------------ Import required packages to use .. container:: cell code .. code:: python from libauc.losses import APLoss from libauc.optimizers import SOAP from libauc.models import resnet18 as ResNet18 from libauc.datasets import CIFAR10 from libauc.utils import ImbalancedDataGenerator from libauc.sampler import DualSampler from libauc.metrics import auc_prc_score import torchvision.transforms as transforms from torch.utils.data import Dataset import numpy as np import torch from PIL import Image Reproducibility ----------------------- The following function ``set_all_seeds`` limits the number of sources of randomness behaviors, such as model intialization, data shuffling, etcs. However, completely reproducible results are not guaranteed across PyTorch releases `[Ref] `__. .. container:: cell code .. code:: python def set_all_seeds(SEED): # REPRODUCIBILITY np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False set_all_seeds(2023) Loading datasets ----------------------- .. container:: cell markdown In this step, we will use the `CIFAR10 `__ as benchmark dataset. Before importing data to ``dataloader``, we construct imbalanced version for CIFAR10 by ``ImbalanceDataGenerator``. Specifically, it first randomly splits the training data by class ID (e.g., 10 classes) into two even portions as the positive and negative classes, and then it randomly removes some samples from the positive class to make it imbalanced. We keep the testing set untouched. We refer ``imratio`` to the ratio of number of positive examples to number of all examples. .. container:: cell code .. code:: python train_data, train_targets = CIFAR10(root='./data', train=True).as_array() test_data, test_targets = CIFAR10(root='./data', train=False).as_array() imratio = 0.02 ## we set the imratio as 0.02 here since AP metric is usually used to evaluate highly imbalanced data. generator = ImbalancedDataGenerator(verbose=True, random_seed=2023) (train_images, train_labels) = generator.transform(train_data, train_targets, imratio=imratio) (test_images, test_labels) = generator.transform(test_data, test_targets, imratio=0.5) .. container:: cell markdown We define the data input pipeline such as data augmentations. In this tutorial, we use ``RandomCrop``, ``RandomHorizontalFlip``. .. container:: cell code .. code:: python class ImageDataset(Dataset): def __init__(self, images, targets, image_size=32, crop_size=30, mode='train'): self.images = images.astype(np.uint8) self.targets = targets self.mode = mode self.transform_train = transforms.Compose([ transforms.ToTensor(), transforms.RandomCrop((crop_size, crop_size), padding=None), transforms.RandomHorizontalFlip(), transforms.Resize((image_size, image_size)), ]) self.transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Resize((image_size, image_size)), ]) def __len__(self): return len(self.images) def __getitem__(self, idx): image = self.images[idx] target = self.targets[idx] image = Image.fromarray(image.astype('uint8')) if self.mode == 'train': image = self.transform_train(image) else: image = self.transform_test(image) return image, target, idx .. container:: cell markdown We define ``dataset``, ``DualSampler`` and ``dataloader`` here. By default, we use ``batch_size`` 64 and we oversample the minority class with ``pos:neg=1:1`` by setting ``sampling_rate=0.5``. .. container:: cell code .. code:: python batch_size = 64 sampling_rate = 0.5 trainSet = ImageDataset(train_images, train_labels) trainSet_eval = ImageDataset(train_images, train_labels,mode='test') testSet = ImageDataset(test_images, test_labels, mode='test') sampler = DualSampler(trainSet, batch_size, sampling_rate=sampling_rate) trainloader = torch.utils.data.DataLoader(trainSet, batch_size=batch_size, sampler=sampler, num_workers=2) trainloader_eval = torch.utils.data.DataLoader(trainSet_eval, batch_size=batch_size, shuffle=False, num_workers=2) testloader = torch.utils.data.DataLoader(testSet, batch_size=batch_size, shuffle=False, num_workers=2) Configuration ----------------------- .. container:: cell markdown Hyper-Parameters .. container:: cell code .. code:: python lr = 1e-3 margin = 0.6 gamma = 0.1 weight_decay = 1e-5 total_epoch = 60 decay_epoch = [30] Model, Loss and Optimizer ----------------------- .. container:: cell code .. code:: python model = ResNet18(pretrained=False, last_activation=None, num_classes=1) model = model.cuda() loss_fn = APLoss(data_len=len(trainSet), margin=margin, gamma=gamma) optimizer = SOAP(model.parameters(), lr=lr, mode='adam', weight_decay=weight_decay) Training ----------------------- .. container:: cell markdown Now it's time for training. And we evaluate Average Precision performance after every epoch. .. container:: cell code .. code:: python print ('Start Training') print ('-'*30) train_log, test_log = [], [] for epoch in range(total_epoch): if epoch in decay_epoch: optimizer.update_lr(decay_factor=10) model.train() for idx, (data, targets, index) in enumerate(trainloader): data, targets, index = data.cuda(), targets.cuda(), index.cuda() y_pred = model(data) y_prob = torch.sigmoid(y_pred) loss = loss_fn(y_prob, targets, index) optimizer.zero_grad() loss.backward() optimizer.step() ######***evaluation***#### # evaluation on training sets model.eval() train_pred_list, train_true_list = [], [] for i, data in enumerate(trainloader_eval): train_data, train_targets, _ = data train_data = train_data.cuda() y_pred = model(train_data) y_prob = torch.sigmoid(y_pred) train_pred_list.append(y_prob.cpu().detach().numpy()) train_true_list.append(train_targets.cpu().detach().numpy()) train_true = np.concatenate(train_true_list) train_pred = np.concatenate(train_pred_list) train_ap = auc_prc_score(train_true, train_pred) train_log.append(train_ap) # evaluation on test sets model.eval() test_pred_list, test_true_list = [], [] for j, data in enumerate(testloader): test_data, test_targets, _ = data test_data = test_data.cuda() y_pred = model(test_data) y_prob = torch.sigmoid(y_pred) test_pred_list.append(y_prob.cpu().detach().numpy()) test_true_list.append(test_targets.numpy()) test_true = np.concatenate(test_true_list) test_pred = np.concatenate(test_pred_list) val_ap = auc_prc_score(test_true, test_pred) test_log.append(val_ap) model.train() print("epoch: %s, train_ap: %.4f, test_ap: %.4f, lr: %.4f"%(epoch, train_ap, val_ap, optimizer.lr )) .. container:: output stream stdout :: Start Training ------------------------------ epoch: 0, train_ap: 0.0691, test_ap: 0.6653, lr: 0.0010 epoch: 1, train_ap: 0.1129, test_ap: 0.6586, lr: 0.0010 epoch: 2, train_ap: 0.3026, test_ap: 0.6780, lr: 0.0010 epoch: 3, train_ap: 0.5028, test_ap: 0.7093, lr: 0.0010 epoch: 4, train_ap: 0.6216, test_ap: 0.7308, lr: 0.0010 epoch: 5, train_ap: 0.6408, test_ap: 0.7268, lr: 0.0010 epoch: 6, train_ap: 0.7405, test_ap: 0.7058, lr: 0.0010 epoch: 7, train_ap: 0.6512, test_ap: 0.7060, lr: 0.0010 epoch: 8, train_ap: 0.8028, test_ap: 0.7318, lr: 0.0010 epoch: 9, train_ap: 0.8302, test_ap: 0.7222, lr: 0.0010 epoch: 10, train_ap: 0.9328, test_ap: 0.7284, lr: 0.0010 epoch: 11, train_ap: 0.8124, test_ap: 0.7122, lr: 0.0010 epoch: 12, train_ap: 0.9302, test_ap: 0.7143, lr: 0.0010 epoch: 13, train_ap: 0.9184, test_ap: 0.7208, lr: 0.0010 epoch: 14, train_ap: 0.7231, test_ap: 0.7018, lr: 0.0010 epoch: 15, train_ap: 0.9508, test_ap: 0.7216, lr: 0.0010 epoch: 16, train_ap: 0.9490, test_ap: 0.7220, lr: 0.0010 epoch: 17, train_ap: 0.9803, test_ap: 0.7337, lr: 0.0010 epoch: 18, train_ap: 0.8972, test_ap: 0.7276, lr: 0.0010 epoch: 19, train_ap: 0.9372, test_ap: 0.7314, lr: 0.0010 epoch: 20, train_ap: 0.9827, test_ap: 0.7293, lr: 0.0010 epoch: 21, train_ap: 0.9640, test_ap: 0.7354, lr: 0.0010 epoch: 22, train_ap: 0.9200, test_ap: 0.7205, lr: 0.0010 epoch: 23, train_ap: 0.9293, test_ap: 0.7118, lr: 0.0010 epoch: 24, train_ap: 0.9944, test_ap: 0.7229, lr: 0.0010 epoch: 25, train_ap: 0.9644, test_ap: 0.7219, lr: 0.0010 epoch: 26, train_ap: 0.9943, test_ap: 0.7216, lr: 0.0010 epoch: 27, train_ap: 0.9577, test_ap: 0.7176, lr: 0.0010 epoch: 28, train_ap: 0.9932, test_ap: 0.7196, lr: 0.0010 epoch: 29, train_ap: 0.8064, test_ap: 0.6964, lr: 0.0010 Reducing learning rate to 0.00010 @ T=23430! epoch: 30, train_ap: 0.9969, test_ap: 0.7329, lr: 0.0001 epoch: 31, train_ap: 0.9975, test_ap: 0.7337, lr: 0.0001 epoch: 32, train_ap: 0.9976, test_ap: 0.7125, lr: 0.0001 epoch: 33, train_ap: 0.9978, test_ap: 0.6998, lr: 0.0001 epoch: 34, train_ap: 0.9979, test_ap: 0.7038, lr: 0.0001 epoch: 35, train_ap: 0.9977, test_ap: 0.7043, lr: 0.0001 epoch: 36, train_ap: 0.9980, test_ap: 0.6990, lr: 0.0001 epoch: 37, train_ap: 0.9980, test_ap: 0.6987, lr: 0.0001 epoch: 38, train_ap: 0.9980, test_ap: 0.6866, lr: 0.0001 epoch: 39, train_ap: 0.9979, test_ap: 0.6968, lr: 0.0001 epoch: 40, train_ap: 0.9981, test_ap: 0.6578, lr: 0.0001 epoch: 41, train_ap: 0.9981, test_ap: 0.6903, lr: 0.0001 epoch: 42, train_ap: 0.9979, test_ap: 0.6868, lr: 0.0001 epoch: 43, train_ap: 0.9982, test_ap: 0.6668, lr: 0.0001 epoch: 44, train_ap: 0.9981, test_ap: 0.6625, lr: 0.0001 epoch: 45, train_ap: 0.9979, test_ap: 0.6624, lr: 0.0001 epoch: 46, train_ap: 0.9983, test_ap: 0.6550, lr: 0.0001 epoch: 47, train_ap: 0.9982, test_ap: 0.6956, lr: 0.0001 epoch: 48, train_ap: 0.9983, test_ap: 0.6835, lr: 0.0001 epoch: 49, train_ap: 0.9981, test_ap: 0.6769, lr: 0.0001 epoch: 50, train_ap: 0.9979, test_ap: 0.7200, lr: 0.0001 epoch: 51, train_ap: 0.9980, test_ap: 0.7048, lr: 0.0001 epoch: 52, train_ap: 0.9981, test_ap: 0.7029, lr: 0.0001 epoch: 53, train_ap: 0.9986, test_ap: 0.6717, lr: 0.0001 epoch: 54, train_ap: 0.9995, test_ap: 0.6088, lr: 0.0001 epoch: 55, train_ap: 0.9999, test_ap: 0.6549, lr: 0.0001 epoch: 56, train_ap: 1.0000, test_ap: 0.6620, lr: 0.0001 epoch: 57, train_ap: 1.0000, test_ap: 0.6461, lr: 0.0001 epoch: 58, train_ap: 1.0000, test_ap: 0.6634, lr: 0.0001 epoch: 59, train_ap: 1.0000, test_ap: 0.6334, lr: 0.0001 Visualization ----------------------- Now, let's see the learning curve for optimizing AUPRC on train and test sets. .. container:: cell code .. code:: python import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (9,5) x=np.arange(len(train_log)) plt.figure() plt.plot(x, train_log, lineStyle='-', label='APLoss Training', linewidth=3) plt.plot(x, test_log, lineStyle='-', label='APLoss Test', linewidth=3) plt.title('CIFAR-10 (2% imbalanced)',fontsize=25) plt.legend(fontsize=15) plt.ylabel('AP', fontsize=25) plt.xlabel('Epoch', fontsize=25) plt.show() .. container:: output display_data .. image:: ./imgs/training_ap.png Comparison ----------------------- Furthermore, we compare our library with TensorFlow Constrained Optimization (TFCO) library which can also be used to maximize AUPRC. For more information about TensorFlow Constrained Optimization (TFCO), please refer to this link. In the comparative experiment, we use same dataset, network and data augmentation. Although TFCO tutorial adopts Adagrad as the default optimizer, we also conduct experiment with Adam optimizer for fair comparison. .. container:: output display_data .. image:: ./imgs/comparison_ap.png