Optimizing AUCMLoss on Imbalanced CIFAR10 Dataset (PESG)
Author: Zhuoning Yuan, Tianbao Yang
Introduction
In this tutorial, you will learn how to quickly train a ResNet20
model by optimizing AUROC using our novel AUCMLoss
and PESG
optimizer [Ref]
on a binary image classification task on Cifar10. After
completion of this tutorial, you should be able to use LibAUC to
train your own models on your own datasets.
Reference:
If you find this tutorial helpful in your work, please cite our library paper and the following papers:
@inproceedings{yuan2021large,
title={Large-scale robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={3040--3049},
year={2021} }
Install LibAUC
Let’s start with installing our library here. In this tutorial, we will use the lastest version for LibAUC by using pip install -U
.
!pip install -U libauc
Importing LibAUC
Import required libraries to use
from libauc.losses import AUCMLoss
from libauc.optimizers import PESG
from libauc.models import resnet20 as ResNet20
from libauc.datasets import CIFAR10
from libauc.utils import ImbalancedDataGenerator
from libauc.sampler import DualSampler
from libauc.metrics import auc_roc_score
import torch
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from sklearn.metrics import roc_auc_score
Reproducibility
These functions limit the number of sources of randomness behaviors, such as model intialization, data shuffling, etcs. However, completely reproducible results are not guaranteed across PyTorch releases [Ref].
def set_all_seeds(SEED):
# REPRODUCIBILITY
torch.manual_seed(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
Image Dataset
Now we define the data input pipeline such as data
augmentations. In this tutorial, we use RandomCrop
,
RandomHorizontalFlip
.
class ImageDataset(Dataset):
def __init__(self, images, targets, image_size=32, crop_size=30, mode='train'):
self.images = images.astype(np.uint8)
self.targets = targets
self.mode = mode
self.transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.RandomCrop((crop_size, crop_size), padding=None),
transforms.RandomHorizontalFlip(),
transforms.Resize((image_size, image_size)),
])
self.transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_size, image_size)),
])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
target = self.targets[idx]
image = Image.fromarray(image.astype('uint8'))
if self.mode == 'train':
image = self.transform_train(image)
else:
image = self.transform_test(image)
return image, target
Hyper-parameters
# HyperParameters
SEED = 123
BATCH_SIZE = 128
imratio = 0.1 # for demo
total_epochs = 100
decay_epochs = [50, 75]
lr = 0.1
margin = 1.0
epoch_decay = 0.003 # refers gamma in the paper
weight_decay = 0.0001
# oversampling minority class, you can tune it in (0, 0.5]
# e.g., sampling_rate=0.2 is that num of positive samples in mini-batch is sampling_rate*batch_size=13
sampling_rate = 0.2
Loading datasets
# load data as numpy arrays
train_data, train_targets = CIFAR10(root='./data', train=True).as_array()
test_data, test_targets = CIFAR10(root='./data', train=False).as_array()
# generate imbalanced data
generator = ImbalancedDataGenerator(verbose=True, random_seed=0)
(train_images, train_labels) = generator.transform(train_data, train_targets, imratio=imratio)
(test_images, test_labels) = generator.transform(test_data, test_targets, imratio=0.5)
# data augmentations
trainSet = ImageDataset(train_images, train_labels)
trainSet_eval = ImageDataset(train_images, train_labels, mode='test')
testSet = ImageDataset(test_images, test_labels, mode='test')
# dataloaders
sampler = DualSampler(trainSet, BATCH_SIZE, sampling_rate=sampling_rate)
trainloader = torch.utils.data.DataLoader(trainSet, batch_size=BATCH_SIZE, sampler=sampler, num_workers=2)
trainloader_eval = torch.utils.data.DataLoader(trainSet_eval, batch_size=BATCH_SIZE, shuffle=False, num_workers=2)
testloader = torch.utils.data.DataLoader(testSet, batch_size=BATCH_SIZE, shuffle=False, num_workers=2)
Model, Loss & Optimizer
# You can include sigmoid/l2 activations on model's outputs before computing loss
model = ResNet20(pretrained=False, last_activation=None, num_classes=1)
model = model.cuda()
# You can also pass Loss.a, Loss.b, Loss.alpha to optimizer (for old version users)
loss_fn = AUCMLoss()
optimizer = PESG(model.parameters(),
loss_fn=loss_fn,
lr=lr,
momentum=0.9,
margin=margin,
epoch_decay=epoch_decay,
weight_decay=weight_decay)
Training
print ('Start Training')
print ('-'*30)
train_log = []
test_log = []
for epoch in range(total_epochs):
if epoch in decay_epochs:
optimizer.update_regularizer(decay_factor=10) # decrease learning rate by 10x & update regularizer
train_loss = []
model.train()
for data, targets in trainloader:
data, targets = data.cuda(), targets.cuda()
y_pred = model(data)
y_pred = torch.sigmoid(y_pred)
loss = loss_fn(y_pred, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
# evaluation on train & test sets
model.eval()
train_pred_list = []
train_true_list = []
for train_data, train_targets in trainloader_eval:
train_data = train_data.cuda()
train_pred = model(train_data)
train_pred_list.append(train_pred.cpu().detach().numpy())
train_true_list.append(train_targets.numpy())
train_true = np.concatenate(train_true_list)
train_pred = np.concatenate(train_pred_list)
train_auc = auc_roc_score(train_true, train_pred)
train_loss = np.mean(train_loss)
test_pred_list = []
test_true_list = []
for test_data, test_targets in testloader:
test_data = test_data.cuda()
test_pred = model(test_data)
test_pred_list.append(test_pred.cpu().detach().numpy())
test_true_list.append(test_targets.numpy())
test_true = np.concatenate(test_true_list)
test_pred = np.concatenate(test_pred_list)
val_auc = auc_roc_score(test_true, test_pred)
model.train()
# print results
print("epoch: %s, train_loss: %.4f, train_auc: %.4f, test_auc: %.4f, lr: %.4f"%(epoch, train_loss, train_auc, val_auc, optimizer.lr ))
train_log.append(train_auc)
test_log.append(val_auc)
Start Training
------------------------------
epoch: 0, train_loss: 0.1447, train_auc: 0.6534, test_auc: 0.6479, lr: 0.1000
epoch: 1, train_loss: 0.1283, train_auc: 0.6918, test_auc: 0.6849, lr: 0.1000
epoch: 2, train_loss: 0.1194, train_auc: 0.6901, test_auc: 0.6885, lr: 0.1000
epoch: 3, train_loss: 0.1127, train_auc: 0.6964, test_auc: 0.6718, lr: 0.1000
epoch: 4, train_loss: 0.1064, train_auc: 0.7178, test_auc: 0.7023, lr: 0.1000
epoch: 5, train_loss: 0.1023, train_auc: 0.7654, test_auc: 0.7388, lr: 0.1000
epoch: 6, train_loss: 0.0972, train_auc: 0.8062, test_auc: 0.7748, lr: 0.1000
epoch: 7, train_loss: 0.0915, train_auc: 0.7813, test_auc: 0.7545, lr: 0.1000
epoch: 8, train_loss: 0.0875, train_auc: 0.8070, test_auc: 0.7834, lr: 0.1000
epoch: 9, train_loss: 0.0848, train_auc: 0.7982, test_auc: 0.7764, lr: 0.1000
epoch: 10, train_loss: 0.0813, train_auc: 0.8180, test_auc: 0.7883, lr: 0.1000
epoch: 11, train_loss: 0.0778, train_auc: 0.8375, test_auc: 0.8098, lr: 0.1000
epoch: 12, train_loss: 0.0745, train_auc: 0.8527, test_auc: 0.8148, lr: 0.1000
epoch: 13, train_loss: 0.0721, train_auc: 0.8615, test_auc: 0.8268, lr: 0.1000
epoch: 14, train_loss: 0.0697, train_auc: 0.8118, test_auc: 0.7781, lr: 0.1000
epoch: 15, train_loss: 0.0683, train_auc: 0.8657, test_auc: 0.8316, lr: 0.1000
epoch: 16, train_loss: 0.0655, train_auc: 0.8495, test_auc: 0.8084, lr: 0.1000
epoch: 17, train_loss: 0.0642, train_auc: 0.8664, test_auc: 0.8286, lr: 0.1000
epoch: 18, train_loss: 0.0627, train_auc: 0.8706, test_auc: 0.8383, lr: 0.1000
epoch: 19, train_loss: 0.0608, train_auc: 0.8465, test_auc: 0.8147, lr: 0.1000
epoch: 20, train_loss: 0.0589, train_auc: 0.8429, test_auc: 0.8053, lr: 0.1000
epoch: 21, train_loss: 0.0577, train_auc: 0.8858, test_auc: 0.8509, lr: 0.1000
epoch: 22, train_loss: 0.0562, train_auc: 0.7541, test_auc: 0.7374, lr: 0.1000
epoch: 23, train_loss: 0.0564, train_auc: 0.8896, test_auc: 0.8495, lr: 0.1000
epoch: 24, train_loss: 0.0548, train_auc: 0.9161, test_auc: 0.8745, lr: 0.1000
epoch: 25, train_loss: 0.0552, train_auc: 0.8962, test_auc: 0.8543, lr: 0.1000
epoch: 26, train_loss: 0.0537, train_auc: 0.8778, test_auc: 0.8356, lr: 0.1000
epoch: 27, train_loss: 0.0533, train_auc: 0.8778, test_auc: 0.8446, lr: 0.1000
epoch: 28, train_loss: 0.0524, train_auc: 0.9000, test_auc: 0.8614, lr: 0.1000
epoch: 29, train_loss: 0.0513, train_auc: 0.9135, test_auc: 0.8717, lr: 0.1000
epoch: 30, train_loss: 0.0505, train_auc: 0.9130, test_auc: 0.8703, lr: 0.1000
epoch: 31, train_loss: 0.0496, train_auc: 0.8591, test_auc: 0.8237, lr: 0.1000
epoch: 32, train_loss: 0.0489, train_auc: 0.8694, test_auc: 0.8343, lr: 0.1000
epoch: 33, train_loss: 0.0478, train_auc: 0.8602, test_auc: 0.8171, lr: 0.1000
epoch: 34, train_loss: 0.0469, train_auc: 0.8828, test_auc: 0.8412, lr: 0.1000
epoch: 35, train_loss: 0.0468, train_auc: 0.8995, test_auc: 0.8604, lr: 0.1000
epoch: 36, train_loss: 0.0473, train_auc: 0.9174, test_auc: 0.8756, lr: 0.1000
epoch: 37, train_loss: 0.0466, train_auc: 0.8961, test_auc: 0.8504, lr: 0.1000
epoch: 38, train_loss: 0.0459, train_auc: 0.8932, test_auc: 0.8485, lr: 0.1000
epoch: 39, train_loss: 0.0443, train_auc: 0.8867, test_auc: 0.8414, lr: 0.1000
epoch: 40, train_loss: 0.0450, train_auc: 0.9071, test_auc: 0.8611, lr: 0.1000
epoch: 41, train_loss: 0.0438, train_auc: 0.8573, test_auc: 0.8100, lr: 0.1000
epoch: 42, train_loss: 0.0441, train_auc: 0.8667, test_auc: 0.8213, lr: 0.1000
epoch: 43, train_loss: 0.0429, train_auc: 0.9191, test_auc: 0.8803, lr: 0.1000
epoch: 44, train_loss: 0.0440, train_auc: 0.9014, test_auc: 0.8563, lr: 0.1000
epoch: 45, train_loss: 0.0426, train_auc: 0.8835, test_auc: 0.8448, lr: 0.1000
epoch: 46, train_loss: 0.0412, train_auc: 0.9271, test_auc: 0.8810, lr: 0.1000
epoch: 47, train_loss: 0.0419, train_auc: 0.9306, test_auc: 0.8867, lr: 0.1000
epoch: 48, train_loss: 0.0413, train_auc: 0.9173, test_auc: 0.8681, lr: 0.1000
epoch: 49, train_loss: 0.0425, train_auc: 0.9144, test_auc: 0.8706, lr: 0.1000
Reducing learning rate to 0.01000 @ T=12100!
Updating regularizer @ T=12100!
epoch: 50, train_loss: 0.0274, train_auc: 0.9614, test_auc: 0.9100, lr: 0.0100
epoch: 51, train_loss: 0.0216, train_auc: 0.9663, test_auc: 0.9131, lr: 0.0100
epoch: 52, train_loss: 0.0196, train_auc: 0.9674, test_auc: 0.9108, lr: 0.0100
epoch: 53, train_loss: 0.0185, train_auc: 0.9677, test_auc: 0.9103, lr: 0.0100
epoch: 54, train_loss: 0.0173, train_auc: 0.9708, test_auc: 0.9111, lr: 0.0100
epoch: 55, train_loss: 0.0162, train_auc: 0.9714, test_auc: 0.9106, lr: 0.0100
epoch: 56, train_loss: 0.0148, train_auc: 0.9738, test_auc: 0.9131, lr: 0.0100
epoch: 57, train_loss: 0.0150, train_auc: 0.9751, test_auc: 0.9131, lr: 0.0100
epoch: 58, train_loss: 0.0139, train_auc: 0.9721, test_auc: 0.9068, lr: 0.0100
epoch: 59, train_loss: 0.0129, train_auc: 0.9786, test_auc: 0.9152, lr: 0.0100
epoch: 60, train_loss: 0.0129, train_auc: 0.9769, test_auc: 0.9114, lr: 0.0100
epoch: 61, train_loss: 0.0125, train_auc: 0.9764, test_auc: 0.9094, lr: 0.0100
epoch: 62, train_loss: 0.0116, train_auc: 0.9772, test_auc: 0.9086, lr: 0.0100
epoch: 63, train_loss: 0.0117, train_auc: 0.9789, test_auc: 0.9120, lr: 0.0100
epoch: 64, train_loss: 0.0111, train_auc: 0.9789, test_auc: 0.9113, lr: 0.0100
epoch: 65, train_loss: 0.0103, train_auc: 0.9798, test_auc: 0.9096, lr: 0.0100
epoch: 66, train_loss: 0.0102, train_auc: 0.9801, test_auc: 0.9085, lr: 0.0100
epoch: 67, train_loss: 0.0100, train_auc: 0.9815, test_auc: 0.9138, lr: 0.0100
epoch: 68, train_loss: 0.0102, train_auc: 0.9804, test_auc: 0.9077, lr: 0.0100
epoch: 69, train_loss: 0.0094, train_auc: 0.9810, test_auc: 0.9090, lr: 0.0100
epoch: 70, train_loss: 0.0092, train_auc: 0.9814, test_auc: 0.9070, lr: 0.0100
epoch: 71, train_loss: 0.0092, train_auc: 0.9815, test_auc: 0.9079, lr: 0.0100
epoch: 72, train_loss: 0.0085, train_auc: 0.9809, test_auc: 0.9075, lr: 0.0100
epoch: 73, train_loss: 0.0083, train_auc: 0.9817, test_auc: 0.9061, lr: 0.0100
epoch: 74, train_loss: 0.0084, train_auc: 0.9810, test_auc: 0.9044, lr: 0.0100
Reducing learning rate to 0.00100 @ T=18150!
Updating regularizer @ T=18150!
epoch: 75, train_loss: 0.0075, train_auc: 0.9833, test_auc: 0.9076, lr: 0.0010
epoch: 76, train_loss: 0.0070, train_auc: 0.9838, test_auc: 0.9074, lr: 0.0010
epoch: 77, train_loss: 0.0070, train_auc: 0.9834, test_auc: 0.9064, lr: 0.0010
epoch: 78, train_loss: 0.0066, train_auc: 0.9844, test_auc: 0.9082, lr: 0.0010
epoch: 79, train_loss: 0.0067, train_auc: 0.9837, test_auc: 0.9061, lr: 0.0010
epoch: 80, train_loss: 0.0069, train_auc: 0.9840, test_auc: 0.9058, lr: 0.0010
epoch: 81, train_loss: 0.0071, train_auc: 0.9840, test_auc: 0.9067, lr: 0.0010
epoch: 82, train_loss: 0.0069, train_auc: 0.9841, test_auc: 0.9053, lr: 0.0010
epoch: 83, train_loss: 0.0065, train_auc: 0.9839, test_auc: 0.9057, lr: 0.0010
epoch: 84, train_loss: 0.0067, train_auc: 0.9837, test_auc: 0.9053, lr: 0.0010
epoch: 85, train_loss: 0.0065, train_auc: 0.9842, test_auc: 0.9060, lr: 0.0010
epoch: 86, train_loss: 0.0066, train_auc: 0.9840, test_auc: 0.9051, lr: 0.0010
epoch: 87, train_loss: 0.0066, train_auc: 0.9847, test_auc: 0.9061, lr: 0.0010
epoch: 88, train_loss: 0.0063, train_auc: 0.9838, test_auc: 0.9036, lr: 0.0010
epoch: 89, train_loss: 0.0062, train_auc: 0.9847, test_auc: 0.9062, lr: 0.0010
epoch: 90, train_loss: 0.0063, train_auc: 0.9840, test_auc: 0.9047, lr: 0.0010
epoch: 91, train_loss: 0.0064, train_auc: 0.9835, test_auc: 0.9032, lr: 0.0010
epoch: 92, train_loss: 0.0064, train_auc: 0.9842, test_auc: 0.9053, lr: 0.0010
epoch: 93, train_loss: 0.0063, train_auc: 0.9838, test_auc: 0.9045, lr: 0.0010
epoch: 94, train_loss: 0.0063, train_auc: 0.9844, test_auc: 0.9040, lr: 0.0010
epoch: 95, train_loss: 0.0063, train_auc: 0.9848, test_auc: 0.9054, lr: 0.0010
epoch: 96, train_loss: 0.0062, train_auc: 0.9836, test_auc: 0.9030, lr: 0.0010
epoch: 97, train_loss: 0.0059, train_auc: 0.9842, test_auc: 0.9041, lr: 0.0010
epoch: 98, train_loss: 0.0063, train_auc: 0.9845, test_auc: 0.9044, lr: 0.0010
epoch: 99, train_loss: 0.0061, train_auc: 0.9846, test_auc: 0.9044, lr: 0.0010
Visualization
Now, let’s see the learning curve for optimizing AUROC on train and test sets.
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (9,5)
x=np.arange(len(train_log))
plt.figure()
plt.plot(x, train_log, lineStyle='-', label='Train Set', linewidth=3)
plt.plot(x, test_log, lineStyle='-', label='Test Set', linewidth=3)
plt.title('AUCMLoss (10% CIFAR10)',fontsize=25)
plt.legend(fontsize=15)
plt.ylabel('AUROC', fontsize=25)
plt.xlabel('Epoch', fontsize=25)
