Source code for libauc.datasets.stl10

import os
import os.path
import numpy as np
from torchvision.datasets.utils import check_integrity, download_and_extract_archive, verify_str_arg
# reference: https://pytorch.org/vision/0.8/_modules/torchvision/datasets/stl10.html#STL10

[docs] def load_file(data_file, labels_file=None): labels = None if labels_file: with open(labels_file, 'rb') as f: labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based with open(data_file, 'rb') as f: # read whole file in uint8 chunks everything = np.fromfile(f, dtype=np.uint8) images = np.reshape(everything, (-1, 3, 96, 96)) images = np.transpose(images, (0, 1, 3, 2)) return images, labels
def _check_integrity(root, train_list, test_list, base_folder): for fentry in (train_list + test_list): filename, md5 = fentry[0], fentry[1] fpath = os.path.join(root, base_folder, filename) if not check_integrity(fpath, md5): return False print('Files already downloaded and verified') return True
[docs] def STL10(root='./data/', split='train'): base_folder = 'stl10_binary' url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz" filename = "stl10_binary.tar.gz" class_names_file = 'class_names.txt' folds_list_file = 'fold_indices.txt' train_list = [ ['train_X.bin', '918c2871b30a85fa023e0c44e0bee87f'], ['train_y.bin', '5a34089d4802c674881badbb80307741'], ['unlabeled_X.bin', '5242ba1fed5e4be9e1e742405eb56ca4'] ] test_list = [ ['test_X.bin', '7f263ba9f9e0b06b93213547f721ac82'], ['test_y.bin', '36f9794fa4beb8a2c72628de14fa638e'] ] splits = ('train', 'train+unlabeled', 'unlabeled', 'test') # download dataset fpath = os.path.join(root, base_folder, filename) if not _check_integrity(root, train_list, test_list, base_folder): download_and_extract_archive(url=url, download_root=root, filename=filename) # choose which set to load if split=='train': path_to_data = os.path.join(root, base_folder, train_list[0][0]) path_to_labels = os.path.join(root, base_folder, train_list[1][0]) data, targets = load_file(path_to_data, path_to_labels) elif split == 'unlabeled': path_to_data = os.path.join(root, base_folder, train_list[2][0]) data, _ = load_file(path_to_data) targets = np.asarray([-1] * data.shape[0]) elif split == 'test': path_to_data = os.path.join(root, base_folder, test_list[0][0]) path_to_labels = os.path.join(root, base_folder, test_list[1][0]) data, targets = load_file(path_to_data, path_to_labels) else: raise ValueError('Out of option!') return data, targets
if __name__ == '__main__': data, targets = STL10(root='./data/', split='test') # return numpy array print (data.shape, targets.shape)