Source code for libauc.models.densenet

# This implementation is adapted from https://github.com/pytorch/pytorch

import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict
try:
    from torch.hub import load_state_dict_from_url
except:
    from torch.utils.model_zoo import load_url as load_state_dict_from_url

from torch import Tensor
from torch.jit.annotations import List


__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']

model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}


class _DenseLayer(nn.Module):
    r"""
    Please refer to the source code for more details about this class.
    """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=False):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features, momentum=0.01)),
        self.add_module('elu1', activation_func(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
                                           growth_rate, kernel_size=1, stride=1,
                                           bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate, momentum=0.01)),
        self.add_module('elu2', activation_func(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1,
                                           bias=False)),
        self.drop_rate = float(drop_rate)
        self.memory_efficient = memory_efficient

    def bn_function(self, inputs):
        # type: (List[Tensor]) -> Tensor
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = self.conv1(self.elu1(self.norm1(concated_features)))  # noqa: T484
        return bottleneck_output

    # todo: rewrite when torchscript supports any
    def any_requires_grad(self, input):
        # type: (List[Tensor]) -> bool
        for tensor in input:
            if tensor.requires_grad:
                return True
        return False

    @torch.jit.unused  # noqa: T484
    def call_checkpoint_bottleneck(self, input):
        # type: (List[Tensor]) -> Tensor
        def closure(*inputs):
            return self.bn_function(inputs)

        return cp.checkpoint(closure, *input)

    @torch.jit._overload_method  # noqa: F811
    def forward(self, input):
        # type: (List[Tensor]) -> (Tensor)
        pass

    @torch.jit._overload_method  # noqa: F811
    def forward(self, input):
        # type: (Tensor) -> (Tensor)
        pass

    # torchscript does not yet support *args, so we overload method
    # allowing it to take either a List[Tensor] or single Tensor
    def forward(self, input):  # noqa: F811
        if isinstance(input, Tensor):
            prev_features = [input]
        else:
            prev_features = input

        if self.memory_efficient and self.any_requires_grad(prev_features):
            if torch.jit.is_scripting():
                raise Exception("Memory Efficient not supported in JIT")

            bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
        else:
            bottleneck_output = self.bn_function(prev_features)

        new_features = self.conv2(self.elu2(self.norm2(bottleneck_output)))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate,
                                     training=self.training)
        return new_features


class _DenseBlock(nn.ModuleDict):
    _version = 2

    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=False):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient,
            )
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            new_features = layer(features)
            features.append(new_features)
        return torch.cat(features, 1)


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features, momentum=0.01))
        self.add_module('ELU', activation_func(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


[docs] class DenseNet(nn.Module): r""" Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int): how many filters to add each layer (`k` in paper) block_config (list of 4 ints): how many layers in each pooling block num_init_features (int): the number of filters to learn in the first convolution layer bn_size (int): multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float): dropout rate after each dense layer num_classes (int): number of classification classes memory_efficient (bool): If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0.0, num_classes=1, memory_efficient=False, last_activation=None): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features, momentum=0.01)), #epsilon=0.001 ('elu0', activation_func(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient ) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features, momentum=0.01)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) self.last_activation = last_activation self.num_classes = num_classes if self.last_activation is not None: self.sigmoid = nn.Sigmoid() # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight) nn.init.xavier_uniform_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) #F.relu(features, inplace=True) out = F.adaptive_avg_pool2d(out, (1, 1)) out = torch.flatten(out, 1) out = self.classifier(out) if self.last_activation == 'sigmoid': out = self.sigmoid(out) elif self.last_activation == 'none' or self.last_activation==None: out = out elif self.last_activation == 'l2': out= F.normalize(out,dim=0,p=2) else: out = self.sigmoid(out) return out
def _load_state_dict(model, model_url, progress): # '.'s are no longer allowed in module names, but previous _DenseLayer # has keys 'norm.1', 'ELU.1', 'conv.1', 'norm.2', 'ELU.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|ELU|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = load_state_dict_from_url(model_url, progress=progress) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] state_dict.pop('classifier.weight', None) state_dict.pop('classifier.bias', None) model.load_state_dict(state_dict, strict=False) def _densenet(arch, growth_rate, block_config, num_init_features, pretrained, progress, **kwargs): model = DenseNet(growth_rate, block_config, num_init_features, **kwargs) if pretrained: _load_state_dict(model, model_urls[arch], progress) return model def DenseNet121(pretrained=False, progress=True, activations='relu', **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ global activation_func activation_func = nn.ReLU if activations=='relu' else nn.ELU # print (activation_func) return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs) def DenseNet161(pretrained=False, progress=True, activations='relu', **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ global activation_func activation_func = nn.ReLU if activations=='relu' else nn.ELU # print (activation_func) return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, **kwargs) def DenseNet169(pretrained=False, progress=True, activations='relu', **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ global activation_func activation_func = nn.ReLU if activations=='relu' else nn.ELU # print (activation_func) return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress, **kwargs) def DenseNet201(pretrained=False, progress=True, activations='relu', **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ global activation_func activation_func = nn.ReLU if activations=='relu' else nn.ELU # print (activation_func) return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress, **kwargs) # alias densenet121 = DenseNet121 densenet161 = DenseNet161 densenet169 = DenseNet169 densenet201 = DenseNet201