Source code for libauc.optimizers.pesg

import torch 
import math 

[docs] class PESG(torch.optim.Optimizer): r""" Proximal Epoch Stochastic Gradient Method (PESG) is used for optimizing the :obj:`~libauc.losses.AUCMLoss`. The key update steps are summarized as follows: 1. Initialize :math:`\mathbf v_0= \mathbf v_{ref}=\{\mathbf{w_0}, a_0, b_0\}, \alpha_0\geq 0` 2. For :math:`t=1, \ldots, T`: 3. :math:`\hspace{5mm}` Compute :math:`\nabla_{\mathbf v} F(\mathbf v_t, \alpha_t; z_t)` and :math:`\nabla_\alpha F(\mathbf v_t, \alpha_t; z_t)`. 4. :math:`\hspace{5mm}` Update primal variables .. math:: \mathbf v_{t+1} = \mathbf v_{t} - \eta (\nabla_{\mathbf v} F(\mathbf v_t, \alpha_t; z_t)+ \lambda_0 (\mathbf v_t-\mathbf v_{\text{ref}})) - \lambda \eta\mathbf v_t 5. :math:`\hspace{5mm}` Update dual variable .. math:: \alpha_{t+1}= [\alpha_{t} + \eta \nabla_\alpha F(\mathbf v_t, \alpha_t; z_t)]_+ 6. :math:`\hspace{5mm}` Decrease :math:`\eta` by a decay factor and update :math:`\mathbf v_{\text{ref}}` periodically where :math:`z_t` is the data pair :math:`(x_t, y_t)`, :math:`\lambda_0` is the epoch-level l2 penalty (i.e., `epoch_decay`), :math:`\lambda` is the l2 penalty (i.e., `weight_decay`), and :math:`\eta` is the learning rate. For more details, please refer to the paper `Large-scale robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification <https://arxiv.org/abs/2012.03173>`__. Args: params (iterable): iterable of parameters to optimize loss_fn (callable): loss function used for optimization (default: ``None``) lr (float): learning rate (default: ``0.1``) mode (str): optimization mode, 'sgd' or 'adam' (default: ``'sgd'``) clip_value (float, optional): gradient clipping value (default: ``1.0``) weight_decay (float, optional): weight decay (L2 penalty) (default: ``1e-5``) epoch_decay (float, optional): epoch decay (epoch-wise l2 penalty) (default: ``2e-3``) momentum (float, optional): momentum factor for 'sgd' mode (default: ``0.9``) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square for 'adam' mode (default: ``(0.9, 0.999)``) eps (float, optional): term added to the denominator to improve numerical stability for 'adam' mode (default: ``1e-8``) amsgrad (bool, optional): whether to use the AMSGrad variant of 'adam' mode from the paper `On the Convergence of Adam and Beyond` (default: ``False``) verbose (bool, optional): whether to print optimization progress (default: ``True``) device (torch.device, optional): the device used for optimization, e.g., 'cpu' or 'cuda' (default: ``None``) Example: >>> optimizer = libauc.optimizers.PESG(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() Reference: .. [1] Yuan, Zhuoning, Yan, Yan, Sonka, Milan, and Yang, Tianbao. "Large-scale robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. https://arxiv.org/abs/2012.03173 """ def __init__(self, params, loss_fn, lr=0.1, mode='sgd', clip_value=1.0, weight_decay=1e-5, epoch_decay=2e-3, momentum=0.9, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, verbose=True, device=None, **kwargs): if not device: self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') else: self.device = device if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= epoch_decay: raise ValueError("Invalid epoch_decay value: {}".format(epoch_decay)) if not isinstance(mode, str): raise ValueError("Invalid mode type: {}".format(mode)) self.params = list(params) self.lr = lr self.mode = mode.lower() self.clip_value = clip_value self.momentum = momentum self.weight_decay = weight_decay self.epoch_decay = epoch_decay self.loss_fn = loss_fn self.a = None self.b = None self.alpha = None self.margin = None try: self.a = loss_fn.a self.b = loss_fn.b self.alpha = loss_fn.alpha self.margin = loss_fn.margin except: print('AUCMLoss is not found!') # init self.model_ref = self.__init_model_ref__(self.params) if epoch_decay > 0 else None self.model_acc = self.__init_model_acc__(self.params) if epoch_decay > 0 else None self.T = 0 # for epoch_decay self.steps = 0 # total optimization steps self.verbose = verbose # print updates for lr/regularizer assert self.mode in ['adam', 'sgd'], "Keyword is not found in [`adam`, `sgd`]!" if self.a is not None and self.b is not None: self.params = self.params + [self.a, self.b] self.defaults = dict(lr=self.lr, margin=self.margin, a=self.a, b=self.b, alpha=self.alpha, clip_value=clip_value, momentum=momentum, betas=betas, eps=eps, amsgrad=amsgrad, weight_decay=weight_decay, epoch_decay=epoch_decay, model_ref=self.model_ref, model_acc=self.model_acc) super(PESG, self).__init__(self.params, self.defaults) def __setstate__(self, state): super(PESG, self).__setstate__(state) for group in self.param_groups: if self.mode == 'sgd': group.setdefault('nesterov', False) elif self.mode == 'adam': group.setdefault('amsgrad', False) else: NotImplementedError def __init_model_ref__(self, params): model_ref = [] if not isinstance(params, list): params = list(params) for var in params + [self.a, self.b]: if var is not None: model_ref.append(torch.empty(var.shape).normal_(mean=0, std=0.01).to(self.device)) return model_ref def __init_model_acc__(self, params): model_acc = [] if not isinstance(params, list): params = list(params) for var in params + [self.a, self.b]: if var is not None: model_acc.append(torch.zeros(var.shape, dtype=torch.float32, device=self.device, requires_grad=False).to(self.device)) return model_acc @property def optim_step(self): r"""Return the number of optimization steps.""" return self.steps
[docs] @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] clip_value = group['clip_value'] momentum = group['momentum'] self.lr = group['lr'] epoch_decay = group['epoch_decay'] model_ref = group['model_ref'] model_acc = group['model_acc'] m = group['margin'] a = group['a'] b = group['b'] alpha = group['alpha'] if self.mode == 'sgd': # updates for i, p in enumerate(group['params']): if p.grad is None: continue if epoch_decay > 0: d_p = torch.clamp(p.grad.data , -clip_value, clip_value) + epoch_decay*(p.data - model_ref[i].data) + weight_decay*p.data else: d_p = torch.clamp(p.grad.data , -clip_value, clip_value) + weight_decay*p.data if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone(d_p).detach() else: buf = param_state['momentum_buffer'] buf.mul_(1-momentum).add_(d_p, alpha=momentum) d_p = buf p.data = p.data - group['lr']*d_p if epoch_decay > 0: model_acc[i].data = model_acc[i].data + p.data elif self.mode == 'adam': # updates for i, p in enumerate(group['params']): if p.grad is None: continue if epoch_decay > 0: grad = torch.clamp(p.grad.data , -clip_value, clip_value) + epoch_decay*(p.data - model_ref[i].data) + weight_decay*p.data else: grad = torch.clamp(p.grad.data , -clip_value, clip_value) + weight_decay*p.data amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) else: denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) step_size = group['lr'] / bias_correction1 p.addcdiv_(exp_avg, denom, value=-step_size) if epoch_decay > 0: model_acc[i].data = model_acc[i].data + p.data if alpha is not None: if alpha.grad is not None: alpha.data = alpha.data + group['lr']*(2*(m + b.data - a.data)-2*alpha.data) #alpha.data = alpha.data + group['lr']*alpha.grad alpha.data = torch.clamp(alpha.data, 0, 999) self.T += 1 self.steps += 1 return loss
[docs] def update_lr(self, decay_factor=None): r"""Updates learning rate given a decay factor.""" if decay_factor != None: self.param_groups[0]['lr'] = self.param_groups[0]['lr']/decay_factor if self.verbose: print ('Reducing learning rate to %.5f @ T=%s!'%(self.param_groups[0]['lr'], self.steps))
[docs] def update_regularizer(self, decay_factor=None): r"""Updates learning rate given a decay factor and resets epoch-level regularizer.""" if decay_factor != None: self.param_groups[0]['lr'] = self.param_groups[0]['lr']/decay_factor if self.verbose: print ('Reducing learning rate to %.5f @ T=%s!'%(self.param_groups[0]['lr'], self.steps)) if self.verbose: print ('Updating regularizer @ T=%s!'%(self.steps)) for i, param in enumerate(self.model_ref): self.model_ref[i].data = self.model_acc[i].data/self.T for i, param in enumerate(self.model_acc): self.model_acc[i].data = torch.zeros(param.shape, dtype=torch.float32, device=self.device, requires_grad=False).to(self.device) self.T = 0