Optimizing One-Way partial AUC on Imbalanced CIFAR10 Dataset (SOPAs)
Introduction
In this tutorial, you will learn how to quickly train a Resnet18
model by optimizing One way Partial AUC (OPAUC) with our novel pAUC_DRO_Loss
and SOPAs
optimizer
[ref] on a binary image
classification task with CIFAR-10 dataset. After completion of this
tutorial, you should be able to use LibAUC to train your own models
on your own datasets.
Reference:
If you find this tutorial helpful in your work, please cite our library paper and the following papers:
@inproceedings{zhu2022auc,
title={When auc meets dro: Optimizing partial auc for deep learning with non-convex convergence guarantee},
author={Zhu, Dixian and Li, Gang and Wang, Bokun and Wu, Xiaodong and Yang, Tianbao},
booktitle={International Conference on Machine Learning},
pages={27548--27573},
year={2022},
organization={PMLR}
}
Install LibAUC
Let’s start with installing our library here. In this tutorial, we will use the lastest version for LibAUC by using pip install -U
.
!pip install -U libauc
Importing LibAUC
Import required packages to use
from libauc.losses import pAUC_DRO_Loss
from libauc.optimizers import SOPAs
from libauc.models import resnet18 as ResNet18
from libauc.datasets import CIFAR10
from libauc.utils import ImbalancedDataGenerator
from libauc.sampler import DualSampler
from libauc.metrics import auc_roc_score
import torchvision.transforms as transforms
from torch.utils.data import Dataset
import numpy as np
import torch
from PIL import Image
Reproducibility
The following function set_all_seeds
limits the number of sources
of randomness behaviors, such as model intialization, data shuffling,
etcs. However, completely reproducible results are not guaranteed
across PyTorch releases
[Ref].
def set_all_seeds(SEED):
# REPRODUCIBILITY
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_all_seeds(2023)
Loading datasets
In this step, we will use the
CIFAR10 as
benchmark dataset. Before importing data to dataloader
, we
construct imbalanced version for CIFAR10 by
ImbalanceDataGenerator
. Specifically, it first randomly splits
the training data by class ID (e.g., 10 classes) into two even
portions as the positive and negative classes, and then it randomly
removes some samples from the positive class to make it imbalanced.
We refer imratio
to the ratio
of number of positive examples to number of all examples.
train_data, train_targets = CIFAR10(root='./data', train=True).as_array()
test_data, test_targets = CIFAR10(root='./data', train=False).as_array()
imratio = 0.2 ##we set the imratio as 0.2 here.
generator = ImbalancedDataGenerator(verbose=True, random_seed=2023)
(train_images, train_labels) = generator.transform(train_data, train_targets, imratio=imratio)
(test_images, test_labels) = generator.transform(test_data, test_targets, imratio=imratio)
We define the data input pipeline such as data
augmentations. In this tutorial, we use RandomCrop
,
RandomHorizontalFlip
.
class ImageDataset(Dataset):
def __init__(self, images, targets, image_size=32, crop_size=30, mode='train'):
self.images = images.astype(np.uint8)
self.targets = targets
self.mode = mode
self.transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.RandomCrop((crop_size, crop_size), padding=None),
transforms.RandomHorizontalFlip(),
transforms.Resize((image_size, image_size), antialias=True),
])
self.transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_size, image_size), antialias=True),
])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
target = self.targets[idx]
image = Image.fromarray(image.astype('uint8'))
if self.mode == 'train':
image = self.transform_train(image)
else:
image = self.transform_test(image)
return image, target, idx
Configuration
Hyper-Parameters
lr = 1e-3
margin = 0.6
gamma = 0.1
Lambda = 1.0
weight_decay = 2e-4
total_epoch = 60
decay_epoch = [30, 45]
load_pretrain = False
Pretraining (Recommended)
Following the original paper, it’s recommended to start from a pretrained checkpoint with cross-entropy loss to significantly boost models’ performance. It includes a pre-training step with standard cross-entropy loss, and a Partial AUC maximization step that maximizes a Partial AUC surrogate loss of the pre-trained model.
from torch.optim import Adam
import warnings
warnings.filterwarnings('ignore')
load_pretrain = True
model = ResNet18(pretrained=False, last_activation=None, num_classes=1)
model = model.cuda()
loss_fn = torch.nn.BCELoss()
optimizer =Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
trainloader = torch.utils.data.DataLoader(trainSet, batch_size=batch_size, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testSet, batch_size=batch_size, shuffle=False, num_workers=2)
best_test = 0
for epoch in range(total_epoch):
if epoch in decay_epoch:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.1 * param_group['lr']
model.train()
for idx, (data, targets, index) in enumerate(trainloader):
data, targets, index = data.cuda(), targets.cuda(), index.cuda()
y_pred = model(data)
y_prob = torch.sigmoid(y_pred)
loss = loss_fn(y_prob, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
######***evaluation***####
# evaluation on test sets
model.eval()
test_pred_list, test_true_list = [], []
with torch.no_grad():
for j, data in enumerate(testloader):
test_data, test_targets, _ = data
test_data = test_data.cuda()
y_pred = model(test_data)
y_prob = torch.sigmoid(y_pred)
test_pred_list.append(y_prob.cpu().detach().numpy())
test_true_list.append(test_targets.numpy())
test_true = np.concatenate(test_true_list)
test_pred = np.concatenate(test_pred_list)
test_pauc = auc_roc_score(test_true, test_pred,max_fpr=0.3)
if best_test < test_pauc:
best_test = test_pauc
torch.save(model.state_dict(), 'ce_pretrained_model_sopas.pth')
model.train()
print("epoch: %s, test_pauc: %.4f, best_test_pauc: %.4f, lr: %.4f"%(epoch, test_pauc, best_test, optimizer.param_groups[0]['lr'] ))
epoch: 0, test_pauc: 0.6030, best_test_pauc: 0.6030, lr: 0.0010
epoch: 1, test_pauc: 0.6749, best_test_pauc: 0.6749, lr: 0.0010
epoch: 2, test_pauc: 0.6666, best_test_pauc: 0.6749, lr: 0.0010
epoch: 3, test_pauc: 0.6917, best_test_pauc: 0.6917, lr: 0.0010
epoch: 4, test_pauc: 0.6525, best_test_pauc: 0.6917, lr: 0.0010
epoch: 5, test_pauc: 0.7070, best_test_pauc: 0.7070, lr: 0.0010
epoch: 6, test_pauc: 0.7555, best_test_pauc: 0.7555, lr: 0.0010
epoch: 7, test_pauc: 0.7448, best_test_pauc: 0.7555, lr: 0.0010
epoch: 8, test_pauc: 0.7583, best_test_pauc: 0.7583, lr: 0.0010
epoch: 9, test_pauc: 0.7545, best_test_pauc: 0.7583, lr: 0.0010
epoch: 10, test_pauc: 0.7258, best_test_pauc: 0.7583, lr: 0.0010
epoch: 11, test_pauc: 0.7956, best_test_pauc: 0.7956, lr: 0.0010
epoch: 12, test_pauc: 0.8150, best_test_pauc: 0.8150, lr: 0.0010
epoch: 13, test_pauc: 0.8036, best_test_pauc: 0.8150, lr: 0.0010
epoch: 14, test_pauc: 0.7952, best_test_pauc: 0.8150, lr: 0.0010
epoch: 15, test_pauc: 0.8003, best_test_pauc: 0.8150, lr: 0.0010
epoch: 16, test_pauc: 0.7778, best_test_pauc: 0.8150, lr: 0.0010
epoch: 17, test_pauc: 0.8249, best_test_pauc: 0.8249, lr: 0.0010
epoch: 18, test_pauc: 0.8038, best_test_pauc: 0.8249, lr: 0.0010
epoch: 19, test_pauc: 0.8295, best_test_pauc: 0.8295, lr: 0.0010
epoch: 20, test_pauc: 0.8236, best_test_pauc: 0.8295, lr: 0.0010
epoch: 21, test_pauc: 0.8370, best_test_pauc: 0.8370, lr: 0.0010
epoch: 22, test_pauc: 0.8464, best_test_pauc: 0.8464, lr: 0.0010
epoch: 23, test_pauc: 0.8088, best_test_pauc: 0.8464, lr: 0.0010
epoch: 24, test_pauc: 0.8337, best_test_pauc: 0.8464, lr: 0.0010
epoch: 25, test_pauc: 0.8365, best_test_pauc: 0.8464, lr: 0.0010
epoch: 26, test_pauc: 0.8448, best_test_pauc: 0.8464, lr: 0.0010
epoch: 27, test_pauc: 0.8076, best_test_pauc: 0.8464, lr: 0.0010
epoch: 28, test_pauc: 0.8388, best_test_pauc: 0.8464, lr: 0.0010
epoch: 29, test_pauc: 0.8477, best_test_pauc: 0.8477, lr: 0.0010
epoch: 30, test_pauc: 0.8617, best_test_pauc: 0.8617, lr: 0.0001
epoch: 31, test_pauc: 0.8637, best_test_pauc: 0.8637, lr: 0.0001
epoch: 32, test_pauc: 0.8625, best_test_pauc: 0.8637, lr: 0.0001
epoch: 33, test_pauc: 0.8640, best_test_pauc: 0.8640, lr: 0.0001
epoch: 34, test_pauc: 0.8611, best_test_pauc: 0.8640, lr: 0.0001
epoch: 35, test_pauc: 0.8651, best_test_pauc: 0.8651, lr: 0.0001
epoch: 36, test_pauc: 0.8583, best_test_pauc: 0.8651, lr: 0.0001
epoch: 37, test_pauc: 0.8665, best_test_pauc: 0.8665, lr: 0.0001
epoch: 38, test_pauc: 0.8643, best_test_pauc: 0.8665, lr: 0.0001
epoch: 39, test_pauc: 0.8634, best_test_pauc: 0.8665, lr: 0.0001
epoch: 40, test_pauc: 0.8619, best_test_pauc: 0.8665, lr: 0.0001
epoch: 41, test_pauc: 0.8612, best_test_pauc: 0.8665, lr: 0.0001
epoch: 42, test_pauc: 0.8610, best_test_pauc: 0.8665, lr: 0.0001
epoch: 43, test_pauc: 0.8600, best_test_pauc: 0.8665, lr: 0.0001
epoch: 44, test_pauc: 0.8612, best_test_pauc: 0.8665, lr: 0.0001
epoch: 45, test_pauc: 0.8629, best_test_pauc: 0.8665, lr: 0.0000
epoch: 46, test_pauc: 0.8630, best_test_pauc: 0.8665, lr: 0.0000
epoch: 47, test_pauc: 0.8625, best_test_pauc: 0.8665, lr: 0.0000
epoch: 48, test_pauc: 0.8627, best_test_pauc: 0.8665, lr: 0.0000
epoch: 49, test_pauc: 0.8642, best_test_pauc: 0.8665, lr: 0.0000
epoch: 50, test_pauc: 0.8619, best_test_pauc: 0.8665, lr: 0.0000
epoch: 51, test_pauc: 0.8629, best_test_pauc: 0.8665, lr: 0.0000
epoch: 52, test_pauc: 0.8627, best_test_pauc: 0.8665, lr: 0.0000
epoch: 53, test_pauc: 0.8637, best_test_pauc: 0.8665, lr: 0.0000
epoch: 54, test_pauc: 0.8598, best_test_pauc: 0.8665, lr: 0.0000
epoch: 55, test_pauc: 0.8605, best_test_pauc: 0.8665, lr: 0.0000
epoch: 56, test_pauc: 0.8606, best_test_pauc: 0.8665, lr: 0.0000
epoch: 57, test_pauc: 0.8622, best_test_pauc: 0.8665, lr: 0.0000
epoch: 58, test_pauc: 0.8618, best_test_pauc: 0.8665, lr: 0.0000
epoch: 59, test_pauc: 0.8610, best_test_pauc: 0.8665, lr: 0.0000
Optimizing pAUC Loss with SOPAs
We define dataset
, DualSampler
and dataloader
here. By
default, we use batch_size
64 and we oversample the minority
class with pos:neg=1:1
by setting sampling_rate=0.5
.
sampling_rate = 0.5
sampler = DualSampler(trainSet, batch_size, sampling_rate=sampling_rate)
trainloader = torch.utils.data.DataLoader(trainSet, batch_size=batch_size, sampler=sampler, num_workers=2)
trainloader_eval = torch.utils.data.DataLoader(trainSet_eval, batch_size=batch_size, shuffle=False, num_workers=2)
testloader = torch.utils.data.DataLoader(testSet, batch_size=batch_size, shuffle=False, num_workers=2)
Model, Loss and Optimizer
model = ResNet18(pretrained=False, last_activation=None, num_classes=1)
model = model.cuda()
# load pretrained model
if load_pretrain:
PATH = 'ce_pretrained_model_sopas.pth'
state_dict = torch.load(PATH)
filtered = {k:v for k,v in state_dict.items() if 'fc' not in k}
msg = model.load_state_dict(filtered, False)
print(msg)
model.fc.reset_parameters()
loss_fn = pAUC_DRO_Loss(data_len=len(trainSet), margin=margin, gamma=gamma)
optimizer = SOPAs(model.parameters(), lr=lr, mode='adam', weight_decay=weight_decay)
Training
Now it’s time for training. And we evaluate partial AUC performance with False Positive Rate(FPR) less than or equal to 0.3, i.e., FPR ≤ 0.3.
print ('Start Training')
print ('-'*30)
train_log, test_log = [], []
best_test = 0
for epoch in range(total_epoch):
if epoch in decay_epoch:
optimizer.update_lr(decay_factor=10)
train_loss = []
model.train()
for idx, (data, targets, index) in enumerate(trainloader):
data, targets, index = data.cuda(), targets.cuda(), index.cuda()
y_pred = model(data)
y_prob = torch.sigmoid(y_pred)
loss = loss_fn(y_prob, targets, index)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
######***evaluation***####
# evaluation on training sets
model.eval()
train_pred_list, train_true_list = [], []
with torch.no_grad():
for i, data in enumerate(trainloader_eval):
train_data, train_targets, _ = data
train_data = train_data.cuda()
y_pred = model(train_data)
y_prob = torch.sigmoid(y_pred)
train_pred_list.append(y_prob.cpu().detach().numpy())
train_true_list.append(train_targets.cpu().detach().numpy())
train_true = np.concatenate(train_true_list)
train_pred = np.concatenate(train_pred_list)
train_pauc = auc_roc_score(train_true, train_pred, max_fpr=0.3)
train_loss = np.mean(train_loss)
train_log.append(train_pauc)
# evaluation on test sets
model.eval()
test_pred_list, test_true_list = [], []
with torch.no_grad():
for j, data in enumerate(testloader):
test_data, test_targets, _ = data
test_data = test_data.cuda()
y_pred = model(test_data)
y_prob = torch.sigmoid(y_pred)
test_pred_list.append(y_prob.cpu().detach().numpy())
test_true_list.append(test_targets.numpy())
test_true = np.concatenate(test_true_list)
test_pred = np.concatenate(test_pred_list)
test_pauc = auc_roc_score(test_true, test_pred,max_fpr=0.3)
test_log.append(test_pauc)
if best_test < test_pauc:
best_test = test_pauc
model.train()
# print results
print("epoch: %s, train_loss: %.4f, train_pauc: %.4f, test_pauc: %.4f, best_test_pauc: %.4f, lr: %.5f"%(epoch, train_loss, train_pauc, test_pauc, best_test, optimizer.lr ))
Start Training
------------------------------
epoch: 0, train_loss: 0.3522, train_pauc: 0.9630, test_pauc: 0.8541, best_test_pauc: 0.8541, lr: 0.00100
epoch: 1, train_loss: 0.0697, train_pauc: 0.9768, test_pauc: 0.8649, best_test_pauc: 0.8649, lr: 0.00100
epoch: 2, train_loss: 0.0506, train_pauc: 0.9738, test_pauc: 0.8564, best_test_pauc: 0.8649, lr: 0.00100
epoch: 3, train_loss: 0.0469, train_pauc: 0.9654, test_pauc: 0.8444, best_test_pauc: 0.8649, lr: 0.00100
epoch: 4, train_loss: 0.0520, train_pauc: 0.9526, test_pauc: 0.8472, best_test_pauc: 0.8649, lr: 0.00100
epoch: 5, train_loss: 0.0553, train_pauc: 0.9336, test_pauc: 0.8261, best_test_pauc: 0.8649, lr: 0.00100
epoch: 6, train_loss: 0.0549, train_pauc: 0.9498, test_pauc: 0.8424, best_test_pauc: 0.8649, lr: 0.00100
epoch: 7, train_loss: 0.0581, train_pauc: 0.9371, test_pauc: 0.8402, best_test_pauc: 0.8649, lr: 0.00100
epoch: 8, train_loss: 0.0574, train_pauc: 0.9286, test_pauc: 0.8284, best_test_pauc: 0.8649, lr: 0.00100
epoch: 9, train_loss: 0.0565, train_pauc: 0.9347, test_pauc: 0.8321, best_test_pauc: 0.8649, lr: 0.00100
epoch: 10, train_loss: 0.0549, train_pauc: 0.9601, test_pauc: 0.8605, best_test_pauc: 0.8649, lr: 0.00100
epoch: 11, train_loss: 0.0561, train_pauc: 0.9535, test_pauc: 0.8406, best_test_pauc: 0.8649, lr: 0.00100
epoch: 12, train_loss: 0.0580, train_pauc: 0.9267, test_pauc: 0.8260, best_test_pauc: 0.8649, lr: 0.00100
epoch: 13, train_loss: 0.0533, train_pauc: 0.9428, test_pauc: 0.8412, best_test_pauc: 0.8649, lr: 0.00100
epoch: 14, train_loss: 0.0559, train_pauc: 0.9352, test_pauc: 0.8281, best_test_pauc: 0.8649, lr: 0.00100
epoch: 15, train_loss: 0.0543, train_pauc: 0.9522, test_pauc: 0.8451, best_test_pauc: 0.8649, lr: 0.00100
epoch: 16, train_loss: 0.0540, train_pauc: 0.9401, test_pauc: 0.8430, best_test_pauc: 0.8649, lr: 0.00100
epoch: 17, train_loss: 0.0512, train_pauc: 0.9563, test_pauc: 0.8546, best_test_pauc: 0.8649, lr: 0.00100
epoch: 18, train_loss: 0.0546, train_pauc: 0.9514, test_pauc: 0.8495, best_test_pauc: 0.8649, lr: 0.00100
epoch: 19, train_loss: 0.0530, train_pauc: 0.9581, test_pauc: 0.8441, best_test_pauc: 0.8649, lr: 0.00100
epoch: 20, train_loss: 0.0512, train_pauc: 0.9253, test_pauc: 0.8182, best_test_pauc: 0.8649, lr: 0.00100
epoch: 21, train_loss: 0.0483, train_pauc: 0.9604, test_pauc: 0.8523, best_test_pauc: 0.8649, lr: 0.00100
epoch: 22, train_loss: 0.0519, train_pauc: 0.9605, test_pauc: 0.8637, best_test_pauc: 0.8649, lr: 0.00100
epoch: 23, train_loss: 0.0521, train_pauc: 0.9546, test_pauc: 0.8557, best_test_pauc: 0.8649, lr: 0.00100
epoch: 24, train_loss: 0.0522, train_pauc: 0.9569, test_pauc: 0.8489, best_test_pauc: 0.8649, lr: 0.00100
epoch: 25, train_loss: 0.0479, train_pauc: 0.9481, test_pauc: 0.8423, best_test_pauc: 0.8649, lr: 0.00100
epoch: 26, train_loss: 0.0504, train_pauc: 0.9369, test_pauc: 0.8345, best_test_pauc: 0.8649, lr: 0.00100
epoch: 27, train_loss: 0.0487, train_pauc: 0.9485, test_pauc: 0.8392, best_test_pauc: 0.8649, lr: 0.00100
epoch: 28, train_loss: 0.0509, train_pauc: 0.9250, test_pauc: 0.8219, best_test_pauc: 0.8649, lr: 0.00100
epoch: 29, train_loss: 0.0488, train_pauc: 0.9502, test_pauc: 0.8422, best_test_pauc: 0.8649, lr: 0.00100
Reducing learning rate to 0.00010 @ T=23430!
epoch: 30, train_loss: 0.0240, train_pauc: 0.9849, test_pauc: 0.8724, best_test_pauc: 0.8724, lr: 0.00010
epoch: 31, train_loss: 0.0153, train_pauc: 0.9880, test_pauc: 0.8733, best_test_pauc: 0.8733, lr: 0.00010
epoch: 32, train_loss: 0.0117, train_pauc: 0.9906, test_pauc: 0.8746, best_test_pauc: 0.8746, lr: 0.00010
epoch: 33, train_loss: 0.0100, train_pauc: 0.9914, test_pauc: 0.8739, best_test_pauc: 0.8746, lr: 0.00010
epoch: 34, train_loss: 0.0087, train_pauc: 0.9930, test_pauc: 0.8735, best_test_pauc: 0.8746, lr: 0.00010
epoch: 35, train_loss: 0.0082, train_pauc: 0.9927, test_pauc: 0.8746, best_test_pauc: 0.8746, lr: 0.00010
epoch: 36, train_loss: 0.0069, train_pauc: 0.9925, test_pauc: 0.8687, best_test_pauc: 0.8746, lr: 0.00010
epoch: 37, train_loss: 0.0059, train_pauc: 0.9939, test_pauc: 0.8746, best_test_pauc: 0.8746, lr: 0.00010
epoch: 38, train_loss: 0.0056, train_pauc: 0.9955, test_pauc: 0.8726, best_test_pauc: 0.8746, lr: 0.00010
epoch: 39, train_loss: 0.0051, train_pauc: 0.9939, test_pauc: 0.8707, best_test_pauc: 0.8746, lr: 0.00010
epoch: 40, train_loss: 0.0048, train_pauc: 0.9946, test_pauc: 0.8727, best_test_pauc: 0.8746, lr: 0.00010
epoch: 41, train_loss: 0.0048, train_pauc: 0.9954, test_pauc: 0.8733, best_test_pauc: 0.8746, lr: 0.00010
epoch: 42, train_loss: 0.0041, train_pauc: 0.9963, test_pauc: 0.8803, best_test_pauc: 0.8803, lr: 0.00010
epoch: 43, train_loss: 0.0041, train_pauc: 0.9952, test_pauc: 0.8714, best_test_pauc: 0.8803, lr: 0.00010
epoch: 44, train_loss: 0.0037, train_pauc: 0.9964, test_pauc: 0.8760, best_test_pauc: 0.8803, lr: 0.00010
Reducing learning rate to 0.00001 @ T=35145!
epoch: 45, train_loss: 0.0032, train_pauc: 0.9968, test_pauc: 0.8773, best_test_pauc: 0.8803, lr: 0.00001
epoch: 46, train_loss: 0.0027, train_pauc: 0.9970, test_pauc: 0.8776, best_test_pauc: 0.8803, lr: 0.00001
epoch: 47, train_loss: 0.0024, train_pauc: 0.9973, test_pauc: 0.8782, best_test_pauc: 0.8803, lr: 0.00001
epoch: 48, train_loss: 0.0022, train_pauc: 0.9966, test_pauc: 0.8763, best_test_pauc: 0.8803, lr: 0.00001
epoch: 49, train_loss: 0.0022, train_pauc: 0.9973, test_pauc: 0.8776, best_test_pauc: 0.8803, lr: 0.00001
epoch: 50, train_loss: 0.0019, train_pauc: 0.9970, test_pauc: 0.8769, best_test_pauc: 0.8803, lr: 0.00001
epoch: 51, train_loss: 0.0022, train_pauc: 0.9975, test_pauc: 0.8777, best_test_pauc: 0.8803, lr: 0.00001
epoch: 52, train_loss: 0.0018, train_pauc: 0.9970, test_pauc: 0.8773, best_test_pauc: 0.8803, lr: 0.00001
epoch: 53, train_loss: 0.0019, train_pauc: 0.9970, test_pauc: 0.8763, best_test_pauc: 0.8803, lr: 0.00001
epoch: 54, train_loss: 0.0019, train_pauc: 0.9975, test_pauc: 0.8776, best_test_pauc: 0.8803, lr: 0.00001
epoch: 55, train_loss: 0.0018, train_pauc: 0.9974, test_pauc: 0.8775, best_test_pauc: 0.8803, lr: 0.00001
epoch: 56, train_loss: 0.0019, train_pauc: 0.9973, test_pauc: 0.8778, best_test_pauc: 0.8803, lr: 0.00001
epoch: 57, train_loss: 0.0016, train_pauc: 0.9978, test_pauc: 0.8787, best_test_pauc: 0.8803, lr: 0.00001
epoch: 58, train_loss: 0.0018, train_pauc: 0.9974, test_pauc: 0.8767, best_test_pauc: 0.8803, lr: 0.00001
epoch: 59, train_loss: 0.0015, train_pauc: 0.9975, test_pauc: 0.8758, best_test_pauc: 0.8803, lr: 0.00001
Visualization
Now, let’s see the learning curves for optimizing pAUC from scratch and from a pretrained model with cross entropy loss.
import matplotlib.pyplot as plt
import numpy as np
train_log= [0.9629983121568626, 0.976789697254902, 0.9737728125490197, 0.9653674415686273, 0.9526080000000001, 0.9336441725490195, 0.9497985317647059, 0.9371098352941176, 0.9286405458823529, 0.9346945380392156, 0.9601394321568628, 0.953512702745098, 0.9266596831372549, 0.9428325396078432, 0.9351774494117648, 0.9522345788235294, 0.9401062211764706, 0.9563442384313725, 0.9514192501960784, 0.9580526368627451, 0.9253358619607843, 0.9603840376470587, 0.9605023058823529, 0.9546136219607844, 0.9568967592156863, 0.9480975999999999, 0.9369100862745098, 0.9484633725490195, 0.9249502117647059, 0.9502059231372548, 0.9849486870588235, 0.9879563984313726, 0.9905859952941177, 0.9913526462745099, 0.9930277772549019, 0.9927193474509803, 0.9925047341176472, 0.9938547639215686, 0.9954592501960785, 0.993869954509804, 0.9945825756862745, 0.995418591372549, 0.996329662745098, 0.9951745380392156, 0.9963752847058824, 0.9967506447058823, 0.9969702023529412, 0.9972820956862744, 0.9966350243137254, 0.9973091764705881, 0.9970341521568626, 0.9974569160784313, 0.9970073286274509, 0.997043074509804, 0.9975259356862745, 0.9974475294117646, 0.9973477584313726, 0.9977820172549019, 0.9974407278431374, 0.9975082290196078]
test_log = [0.8540740392156863, 0.8649267450980391, 0.8564147450980393, 0.8444150588235293, 0.8471686274509804, 0.826121725490196, 0.8424131764705882, 0.8401847843137256, 0.8284373333333332, 0.8320996078431373, 0.8604749803921569, 0.840553725490196, 0.8259722352941177, 0.8412304313725489, 0.8280956862745098, 0.8450829803921568, 0.843001725490196, 0.854564862745098, 0.8495196862745098, 0.8440784313725489, 0.8182186666666666, 0.8522569411764706, 0.8636740392156863, 0.8557358431372548, 0.8489019607843137, 0.8422538039215686, 0.8344840784313725, 0.8391745882352941, 0.8218570980392157, 0.8421825882352941, 0.8723526274509803, 0.8732980392156863, 0.8746343529411764, 0.8739411764705883, 0.8735287843137255, 0.8745794509803921, 0.8686682352941176, 0.8746359215686275, 0.8726382745098038, 0.8706779607843138, 0.8727118431372549, 0.8732894117647059, 0.880304156862745, 0.8714334117647058, 0.8760409411764706, 0.8772798431372548, 0.8776307450980392, 0.8781731764705882, 0.8763093333333334, 0.8776247843137255, 0.8768696470588234, 0.8777276862745098, 0.8773055686274509, 0.8763356862745098, 0.877628862745098, 0.8775463529411764, 0.8778290196078431, 0.8787496470588235, 0.876702431372549, 0.8758170980392157]
train_log_scratch = [0.6890966588235294, 0.7498066949019607, 0.77299424, 0.7538028737254903, 0.7556846180392157, 0.8407256533333333, 0.8185373364705881, 0.8357328627450981, 0.8290430870588235, 0.8706400188235295, 0.8983218823529411, 0.8901459952941176, 0.8762650792156863, 0.8643537192156863, 0.8762003952941176, 0.9327183498039215, 0.9058492549019608, 0.9225154133333333, 0.9391776564705883, 0.9153873443137255, 0.9427768156862745, 0.918611105882353, 0.9488297160784314, 0.9422692141176472, 0.9397862211764705, 0.9447884047058823, 0.9376482133333333, 0.9170201662745099, 0.9400590368627451, 0.9428715294117647, 0.9827926776470589, 0.9869608282352941, 0.9892946447058824, 0.9910100705882354, 0.9913128219607843, 0.993834779607843, 0.9938273317647058, 0.9955538698039215, 0.9949663435294117, 0.9957406619607845, 0.9957660737254902, 0.9957580674509803, 0.9957963294117649, 0.9963942901960784, 0.9965594917647058, 0.9969945600000001, 0.9972550839215686, 0.9974924862745098, 0.9969971074509804, 0.997616803137255, 0.9976887654901962, 0.9980113945098039, 0.9977375623529412, 0.9977079843137253, 0.9979535686274509, 0.998025951372549, 0.998142908235294, 0.9981611168627451, 0.9977764141176471, 0.9979765709803923]
test_log_scratch = [0.6823946666666666, 0.7297479215686274, 0.747155137254902, 0.7293926274509804, 0.7213540392156863, 0.7886792156862745, 0.7819234509803922, 0.7881909019607842, 0.7723794509803921, 0.7988341960784313, 0.8359945098039215, 0.8195965490196079, 0.8108655686274511, 0.7986409411764706, 0.7982105098039216, 0.852886274509804, 0.819928156862745, 0.8454426666666666, 0.8503579607843137, 0.8292087843137255, 0.8498487843137255, 0.8227733333333334, 0.8496687058823529, 0.8344301176470588, 0.84, 0.8395469803921568, 0.8437207843137255, 0.8221675294117646, 0.8352611764705882, 0.8306180392156863, 0.8663220392156863, 0.8681480784313725, 0.8710854901960785, 0.8700506666666667, 0.8700886274509803, 0.8714505098039216, 0.8706748235294117, 0.8733140392156862, 0.873332705882353, 0.874576, 0.8714436078431371, 0.8704718431372549, 0.8702296470588236, 0.8724760784313725, 0.8709339607843137, 0.8711752156862745, 0.8721429019607843, 0.8720614901960784, 0.869857725490196, 0.8717300392156864, 0.8717584313725489, 0.8734641568627451, 0.8732724705882353, 0.8717474509803922, 0.8723347450980391, 0.8721515294117648, 0.8720542745098039, 0.8722836078431372, 0.87048, 0.8709046274509804]
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(12,5))
plt.suptitle('CIFAR-10 (20% imbalanced)',fontsize=25)
x=np.arange(len(train_log))
ax0.plot(x, train_log_scratch, label='From Scratch', linewidth=3)
ax0.plot(x, train_log, label='From Pretraining', linewidth=3)
ax0.set_title('Training',fontsize=25)
ax1.plot(x, test_log_scratch, label='From Scratch', linewidth=3)
ax1.plot(x, test_log, label='From Pretraining', linewidth=3)
ax1.set_title('Testing',fontsize=25)
ax0.legend(fontsize=15)
ax1.legend(fontsize=15)
ax0.set_ylabel('pAUC(FPR≤0.3)', fontsize=20)
ax0.set_xlabel('Epoch', fontsize=20)
ax1.set_ylabel('pAUC(FPR≤0.3)', fontsize=20)
ax1.set_xlabel('Epoch', fontsize=20)
plt.tight_layout()
Comparison
Furthermore, we compare our performance in terms of pAUC with the AUCM Loss, which can directly optimize AUROC. For detail about AUCM Loss, please refer to AUCM.